

CONSIDERATIONS AND TECHNIQUES
FOR OPTIMAL DATABASE PERFORMANCE

Db2 Night Show

2021-12-10

Jim Bean

Cigna Performance & Forensics

The information contained in this presentation is provided for informational purposes only. While

efforts were made to verify the completeness and accuracy of the information contained in this

presentation, it is provided “as is” without warranty of any kind, expressed or implied. Cigna

shall not be responsible for any damages arising out of the use of, or otherwise related to, this

presentation or any other documentation provided.

Any statements of performance are based on measurements and projections using nonstandard

benchmarks in an uncontrolled environment. The actual throughput or performance

improvements that you will experience will vary depending on many factors, including DBMS

configuration, OS configuration, I/O configuration, storage configuration, workload processed

and many others. Therefore, no assurance can be given that you will achieve similar or

comparable results.

IBM, DB2 and Db2 are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

Database Performance Analyzer (DPA) software produced by SolarWinds®.

Quest Central is a registered trademark of Quest Software.

Disclaimer

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 2

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 3

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• DBMS

• OS

• Server

o More resources (faster CPU; more memory; etc.)

• Storage

• Costs from lack of currency

o Security vulnerabilities

o Code defects

o Support

o Inability to use / lack of new features and functionality

o No beneficial performance improvements

o More CPUs = more licensing costs (generally)

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 4

• Example: 21+TB PRD data warehouse (one of several for this app totaling 85+TB)

• Throughput not fast enough; but “this is not a performance issue”

• Request seeking more and faster CPUs which would increase costs, impact licensing, takes

significant man-hours, may require an outage impacting the business, adds risk, etc.

• Issue wasn’t with HW; rather design and implementation of the design resulting in

underutilization of the existing HW

• Configuration:

o One catalog node (coordinator) on one server

o Eight partitioning nodes (workers) across four servers

o Each of the five servers has four logical CPUs and 64 GB memory

o Total of 20 logical CPUs

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 5

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 6

• On the prior slide seven logical CPUs in use across the five logical servers

• Very inefficient use of resources from the database perspective

o Minimal parallelism

o Partitioning node servers generally under 25% (except backups)

o Catalog node server very busy, pushing 100% at times and leading to alerts on the logical server

o Catalog node should not be burdened with “heavy lifting” – it’s supposed to be the coordinator

• Not a shortage of CPU, rather an inappropriate use of CPU

• Based on lack of proper partitioning and placement of database objects

o Large objects have to be partitioned properly to spread the workload

o And underlying files spread to obtain maximum parallelism

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 7

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 8

• On the prior slide for 20 minutes 13 logical CPUs in use across the five logical servers

• Essentially using double the CPU, driving significantly more IO and increasing throughput

• Much more efficient use of resources from the database perspective

o Increased parallelism

o Partitioning node servers at 60%

o Catalog node server 50 to 60%

• It’s all about proper partitioning and placement

• Spreads the workload amongst the eight nodes on the four partitioning servers

• Puts more of the HW to use versus having it sit idle

• One example of partitioned workload processing

• Still have much more to go because there is still far too much processing on the catalog node

versus the partitioning nodes as the first slide showed

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 9

• Direct ties via configuration parameters

• Parallelism/no parallelism and number of cores vs. speed of cores

• To compress or not to compress

o impact on processing (CPU)

o impact on storage and memory footprint

• Offload processing where possible to less expensive processing platforms

o IDAA (IBM Db2 Analytics Accelerator)

o Reporting databases

o Minimized (data: horizontally and vertically)

o Optimized for specific processing (DBMS configuration; storage; indexing)

• Storage

o SSD (Solid-State Drives) or Flash

o Spindle

o Optical

HW, SW and Currency

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 10

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 11

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• Some database configuration parameters control enablement of certain features

o Automatic maintenance activities (reorg, rebuild, stats, etc.)

o Compression

o Extent size, prefetching, etc.

o External tables and locations

o Parallelism and maximum degree

o Query optimization levels, statement concentration

o HA and DR

o Workload manager

o Monitoring / tracing activation

o Self-tuning, health monitoring

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 12

• Some database configuration parameters control and allocate hardware resources

o Memory allocations (caches, heaps, etc.) including defaults, min, max, auto

o Automatic memory management

o Network buffers

o HWMs / maximum limits (open files, locks, sessions, init. agents, pooled agents, etc.)

o Page cleaners, async readers, etc.

o CPUs, speed (auto detect)

o Logging (active log, sync points, transaction manager, diaglog, etc.)

o Recovery (e.g. backups and trackmod, etc.)

o Utility processing

• Example: Proper use of the Db2 LUW package cache (without statement concentrator)

o With proper use of parameter markers, saves significant space in the package cache

o Also reduces CPU significantly

o Repeatedly-executed statements with varying WHERE criteria in a highly-active OLTP environment

run faster and consume less resources than the repeated compilations

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 13

• For a CRM app

o Recently implemented application changes reduced dynamic SQL compilation and prepare time

o Compiling a simple dynamic SQL statement may take a ms or two

o Some can take as much as 500 ms or even more

o Although generally small, as we’ll see later, in very high quantities this can lead to significant time

o And this is usually all CPU time as all necessary information is cached, assuming other settings in the

DBMS are configured appropriately

• The following slide shows the impacts of application changes for six sets of SQL calls

• Reduced total dynamic SQL compilation and prepare time about 60 minutes per day, or about

85% - all CPU time (catalog cache)

• Reduced total database processing time over 12% by eliminating 10s of millions of

compilations per day

• Picked the top six sets of SQL calls to get the “biggest bang for the buck”

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 14

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 15

• Seen similar issues with batch processing in another app

• Next slide shows high compile and prepare times

• Over the full 24-hour day, averaged >43% of the total database time

• For certain hours, much higher

o 00:00 93%

o 01:00 100%

o 02:00 62%

o 20:00 52%

o 21:00 52%

• Significant improvements to batch processing can be realized by using parameter markers

versus literals in dynamic SQL calls, to eliminate redundant compiling

• In many of these cases the compile times exceed the execution times

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 16

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 17

• Parameter markers / host variables

o Use appropriately for frequently-executed dynamic SQL calls that have varying WHERE criteria

o Eliminates unnecessary compile/prepare/bind time to repetitively determine access paths

o Compile time can exceed SQL call execution time, and frequently does for optimized SQL calls

o Can have a drastic impact on CPU consumption reflected as high COMP, PREP or BIND time

o Can calculate savings from using parameter markers

o Likewise can identify those candidates not using parameter markers when they should be

o A recent example; the next slide shows dynamic SQL not using parameter markers (how not to do it)

o The subsequent slide shows dynamic SQL calls using parameter markers appropriately; examine the

execution count (Execs) versus the compilation count (Comps)

o From the final SQL call using parameter markers appropriately, we see

update INTXN.TASK_ATTR set BUS_STEP_ID=? where TASK_ATTR_ID=?

o Executed 11,027,200 times since first being inserted into the dynamic SQL statement cache (package

cache)

o Only two compiles at 1 ms each for a total of 2 ms

o But … 11,027,198 compiles at 1 ms each were saved, for a total of 11,027,198 ms

o That’s 11,027 seconds or over 3 hours of CPU time, for just one SQL statement in the cache

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 18

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 19

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 20

• And of course there are exceptions – “it depends”

• Example: Situation where using parameter markers would degrade performance

o Non-uniform spread of indexed data (STATUS_CD)

o With literals provided, and valid runstats, the optimizer knows what to expect

o With so many rows qualifying (295M rows or 65%), Db2 chose table scan with prefetch as it should

o With parameter markers, it doesn’t know what to expect, and chose the access path based on certain

“assumptions”

o In this particular case, the optimizer generated an access path using a non-clustered index to

subsequently access data pages even though 65% of the data qualified

o Results in “death by random IO”

o The SQL will run significantly longer, even though EXPLAIN showed a lower cost (estimated timerons)

o REOPT VARS option may help

 REOPT ONCE (first time; may help; “should” choose table scan with list prefetch again)

 REOPT ALWAYS (back to repeated compiles)

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 21

• Miscellaneous

o Database status, level, etc.

o Authentication, security and security groups

o Data type defaults and conversions

o Date and other data type formatting

o Diagnostics (level; location; etc.)

o Language

o Codepage

o Locking and deadlocking, timeout values

o User exits

Database Configuration

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 22

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 23

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• Reorgs; when to reorg and why

o Online vs. offline; be aware of the differences

o Active tables needing reorg nightly or weekly; offline reorg quarterly

o Traditional approach as to when and what to reorg

o Logically deleted rows (e.g. purge; more later)

o Data re-located to less than optimal page placement (e.g. overflow access)

o Use a tool (or develop one) to track overflow accesses by table

o This is an excellent indicator of rows out of place and that are read, indicative of needing a reorg

• Database tuning started for the large data warehouse

o First set of reorgs completed 3/7, and more on 3/21 – see next slide

o Much more database tuning remains including repartitioning, SQL tuning, index tuning, data purging,

etc.

Maintenance

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 24

Maintenance

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 25

• Runstats can solve major performance issues; two examples below

o First Incident from a while back

o Called in to investigate major CPU and locking issues on a Sunday afternoon

o Maintenance on Db2 zOS side, required bringing down a web app early Sunday morning

o Issue encountered later that morning after everything was back up

o Second issue in January

o This was a reoccurrence

o Performance would be fine for weeks, then would degrade for a while; then improve again

o No explanation as to why at the time

Maintenance

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 26

• An obvious problem, although they’re not always as obvious and certainly not
always CPU (although there is a tendency to focus on CPU).

Houston, we have a problem

27

Copyright © 2020 Cigna

• One thing is for certain – be sure you understand what the problem is and the
impact BEFORE tuning or taking any actions; else you could be tuning the wrong
SQL or taking the wrong actions.

• Example: INSERT statement running long due to locking. Everyone was focused
on the INSERTs and locking, but it wasn’t a locking issue; it was a performance
issue.

• Many performance issues masquerade or appear as locking issues. The issue
wasn’t even with the INSERT; it was a SELECT (two table join) including the table
that was INSERTed to, resulting in CPU exhaustion, locking, etc. And it didn’t
require an index to resolve either.

Identifying “candidates” for improvement (2|6)

28

Copyright © 2020 Cigna

29

Copyright © 2020 Cigna

• With poor response, a crisis call was initiated.

• The focus on this issue was locking experienced by certain INSERTs. Without full
understanding, an application recycle was attempted to no avail; same thing
happened afterward.

• Upon joining the crisis call, learned they were about to stop the application,
recycle Db2 and restart the application (again).

• Halted that activity since the root cause of the problem wasn’t fully understood;
therefore how could they say this would help?

Identifying “candidates” for improvement (4|6)

30

Copyright © 2020 Cigna

• Examined other data and stats; see reports on the next slide. Reviewing the
issue, shifted focus to a SELECT with a two-table join including the table suffering
from locking when performing INSERTs.

• From reports on the next slide, it’s clear the execution count for the SELECT was
normal for a Sunday, yet the access path must have changed resulting in
significantly more row reads overall and per execution.

• Instead of averaging under 70 row reads and under 0.2ms per execution, now the
SELECT was averaging over 370K row reads and over 35 seconds per execution.

Identifying “candidates” for improvement (5|6)

31

Copyright © 2020 Cigna

32

Copyright © 2020 Cigna

• Next step is to examine the access path.

• From the next slide showing the “before” and “after” access paths, there’s a slight
difference resulting in very different performance levels.

• The access path change was a result of running stats when the two tables
accessed were empty!

• Solution was to run stats with sufficient data in the tables.

• Difference was incredible; instead of averaging over 370K row reads and over 35
seconds per execution, now the SELECT was averaging under 70 row reads and
under 0.2ms per execution again.

• Performance of this two-table SELECT was back to normal, stabilizing CPU and
eliminating locking. Performance of the INSERT was back to normal as well.

When a new index WASN’T needed #1 (1|10)

33

Copyright © 2020 Cigna

34

Copyright © 2020 Cigna

35

Copyright © 2020 Cigna

• Here’s another issue that started January 28th. Further research and testing
showed the access path changed after runstats executed. No other changes were
made.

• The SQL calls affected are 7 table joins, unioned together 3 times.

• Although all the tables involved are small (under 100K rows) we found sampling
was used.

• Using full runstats resulted in a better access path improving performance as of
January 30th PM.

• There have been no access path changes since; the access paths have remained
stable since removing “SAMPLED” option.

When a new index WASN’T needed #3 (8|10)

36

Copyright © 2020 Cigna

37

Copyright © 2020 Cigna

38

Copyright © 2020 Cigna

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 39

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• Approach is very dependent on the relative amount of data to be archived and purged

• If a large portion of the data is being archived and purged consider:

o Unloading the data to be archived (if necessary)

o Unloading the data to be retained

o Optionally drop unnecessary indexes

o Sorting the data to be retained in data clustering sequence

o Loading the data to be retained

o Optionally recreate indexes

o Runstat

• This method is extremely efficient if a large percentage of the data is being purged; e.g. no

reorgs needed

• If there are HW updates, change of hosting, etc., can minimize data conversion and transport

• Useful if there is no scheduled, automated purge, and periodically (e.g. annually) a manual

purge is performed

Data Archive and Purge

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 40

• If a small portion of the data is being archived and purged consider:

o Using “traditional” methods of selecting the data to be archived (if necessary)

o Optionally drop unnecessary indexes

o Delete the data to be purged

o Optionally reorg

o Optionally recreate indexes

o Runstat

• This method is preferred if a small percentage of the data is being purged

• Reorgs may be needed

• Useful for a scheduled, automated purge (e.g. weekly) that can be combined with periodic

reorgs (e.g. monthly or quarterly)

Data Archive and Purge

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 41

• In a partitioned environment, partition rotation can be used

• Be aware of any application- or Db2-maintained RI

• RI drives the sequence of tables processed

• Either way, there should be an archive and purge strategy in place to keep size and space in

check

• Impacts sequential processing such as some batch, utilities (backup, reorg, runstats)

• Should have minimal impact on OLTP

• Monitor levels on indexes; an increase in levels can indicate an extra physical read

• Keeping objects purged to minimum necessary can keep levels in check, for OLTP

• Keeping objects purged to minimum necessary can keep batch and utilities consistent

• There are tools available, e.g. IBM InfoSphere Optim Archive, to facilitate archive and purge

• And they take into consideration RI

• If you haven’t purged in a “long time” purging can result in huge improvements

Data Archive and Purge

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 42

• Every application, every database must have documented data retention requirements

• From that, archive and purge rules can be defined

• Not all data in an application has to have the same retention; e.g. appeals data is needed longer

• Archive only the data necessary; likely a subset of tables, subset of rows (e.g. appeals data), subset of

columns

• The smaller the data needed for retention, the smaller the archive tables or files can be

• Archive and purge on some regular basis:

o Nightly / weekly during “quiet” times to minimize processing impact and take advantage of available resources

o Monthly if less-frequent cycle suffices since application volume is low

o Continuous for some very active applications; watch locking and commit frequency / UOW sizing

• Use your own or use a product; either way just use something to purge unnecessary data

• Be sure to reorg and runstat as required afterward

• Impacts processing that scans; sequential batch processing and maintenance (e.g. backups)

• A recent example

Data Archive and Purge

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 43

Data Archive and Purge

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 44

• Before purge: 8.052 Billion physical reads/day

• After purge: 6.735 Billion physical reads/day (data copy tables present / image copied)

• After purge: 2.765 Billion physical reads/day (data copy tables dropped)

• Net: 65.7% reduction in physical reads/day

Data Archive and Purge

45 Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 46

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• I’ve presented previously at several CCDUG and IDUG conferences; in those presentations

you can find much on SQL tuning

• We’ll review some items I’ve come across multiple times

o Don’t use SELECT * …

 Hear this over and over

 Really can make a huge difference, especially when physical sorts are involved

 And can make all the difference for index-only access considerations

o Proper placement of parentheses

 Include parentheses where needed (required), and for clarification

 Be specific and careful about placement

 Avoid unnecessary parentheses

 Incorrect placement can prevent proper index usage leading to performance issues

 … And invalidate the actual query results returned

o Unnecessary sorting (ORDER BY, GROUP BY, DISTINCT)

o SQL simplification and function removal; impacting index usage

 Know your data

 Don’t use functions unnecessarily

SQL

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 47

• Formatting of SQL calls and proper placement of parentheses are key

• Here’s a portion of a SQL call from one of our FileNet databases:

SELECT ...

 FROM PROVIDE2.DocVersion T0

 WHERE (T0.home_id IS NULL

 and T0.recovery_item_id IS NULL

 AND (((u4c98_producercode = ?

 OR (u4c98_producercode = ?

 AND u53a3_statementdate <= ?

 AND u53a3_statementdate >= ?

 AND u2922_published = ?

 AND uab72_viewable = ?))

 AND object_class_id=?

 AND is_current = ?)))

 ORDER BY u53a3_statementdate DESC

• Received a message of poor performing searches from our DBA; investigated

• I noticed an issue immediately, something with the WHERE criteria different from all other

searches

SQL

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 48

• I added some color and reformatted the SQL snippet to make it clear:

SELECT ...

 FROM PROVIDE2.DocVersion T0

 WHERE (T0.home_id IS NULL

 and T0.recovery_item_id IS NULL

 AND (((u4c98_producercode = ? OR

 (u4c98_producercode = ? AND u53a3_statementdate <= ? AND

 u53a3_statementdate >= ? AND u2922_published = ? AND

 uab72_viewable = ?))

 AND object_class_id=?

 AND is_current = ?)))

 ORDER BY u53a3_statementdate DESC

SQL

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 49

• What was intended is:

SELECT ...

 FROM PROVIDE2.DocVersion T0

 WHERE T0.home_id IS NULL

 AND T0.recovery_item_id IS NULL

 AND (u4c98_producercode = ? OR u4c98_producercode = ?)

 AND u53a3_statementdate <= ?

 AND u53a3_statementdate >= ?

 AND u2922_published = ?

 AND uab72_viewable = ?

 AND object_class_id = ?

 AND is_current = ?

 ORDER BY u53a3_statementdate DESC

• Corrected the performance issue, and more importantly corrected the results returned by

the SQL call

• Using an IN clause is preferred; much more readable and lessens the risk of making a

parentheses-related error

 AND u4c98_producercode IN (?,?)

SQL

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 50

• What was intended is:

SELECT ...

 FROM PROVIDE2.DocVersion T0

 WHERE T0.home_id IS NULL

 AND T0.recovery_item_id IS NULL

 AND u4c98_producercode IN (?,?)

 AND u53a3_statementdate <= ?

 AND u53a3_statementdate >= ?

 AND u2922_published = ?

 AND uab72_viewable = ?

 AND object_class_id = ?

 AND is_current = ?

 ORDER BY u53a3_statementdate DESC

SQL

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 51

• Here’s an example of SQL that needs to be tuned first:
SELECT ...

 FROM PRV.CHCP_USR_TIN_ACCSS_MGR

 WHERE trim(SSO_ID)=trim(?)

 AND upper(trim(LOB_TY))<>'FIM'

 AND (REGISTERED_TIN is null OR trim(REGISTERED_TIN)='')

• which can be rewritten as:
SELECT ...

 FROM PRV.CHCP_USR_TIN_ACCSS_MGR

 WHERE SSO_ID=?

 AND LOB_TY<>'FIM'

 AND (REGISTERED_TIN is null OR REGISTERED_TIN='')

When a new index WASN’T needed #2 (4|10)

52

Copyright © 2020 Cigna

• After verifying data from the table, EXPLAIN estimated a 99.98% reduction with
SQL changes alone.

• Db2 chose to use an already-existing index on SSO_ID as one would suspect since
it has good cardinality.

• The optimal index for this revised SQL call is an index on
CHCP_USR_TIN_ACCSS_MGR (SSO_ID, REGISTERED_TIN, LOB_TY), although we
never created it.

• With SQL changes alone these calls were rarely captured afterward and our
tooling reflected average run times of 0 to at most 0.76ms.

When a new index WASN’T needed #2 (5|10)

53

Copyright © 2020 Cigna

• Before

• After

• Comparison

When a new index WASN’T needed #2 (6|10)

54

Copyright © 2020 Cigna

55

Copyright © 2020 Cigna

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 56

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• I’ve presented previously at several CCDUG and IDUG conferences; in those presentations

you can find much on Indexing

• We’ll review several items I’ve come across multiple times

o Unused indexes

o Single-column indexes, no multi-column indexes

o Multi-index access versus multi-column index access

o Physical sorting

o Referential integrity

o Index-only access and INCLUDE columns

o “One fetch” access

o Expression-based indexes

o EXCLUDE NULL KEYS

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 57

• Identify and DROP unused indexes

o Whenever I’m analyzing SQL and recommending either a new index or an index change, I run a quick

check against PRD to see if all the indexes are used, and how recently:
SELECT tbcreator, tbname AS TABLE_NAME, creator, name AS INDEX_NAME, lastused AS LAST_USED,

 firstkeycard AS FIRST_KEY_CARD, fullkeycard AS FULL_KEY_CARD, nleaf AS LEAF_PAGES,

 nlevels AS LVLS, numrids AS ROWS, colnames AS COLUMN_NAMES

 FROM sysibm.sysindexes

--HERE tbcreator <> 'SYSIBM' -- Bypass UDB Catalog Tables

 WHERE tbcreator = 'your_table_creator'

 AND tbname IN ('your_table_name1', 'your_table_name2')

 ORDER BY 1, 2, lastused DESC, firstkeycard DESC

o Why? Why not? Might as well

o Often I find never-used indexes, not-recently-used indexes, redundant indexes, etc.

o Eliminates overhead of maintaining indexes

o For redundant, run query above with ORDER BY 1, 2, colnames

o In earlier versions of Db2, there were issues getting proper lastused values updated in the sysindexes

table; that was long ago and is no longer an issue

o Of course always test thoroughly and be aware of indexes used solely for monthly, quarterly or yearly

processing

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 58

• Single-column indexes, no multi-column indexes

o I’ve seen various product databases come with many single-column indexes, and no or very few multi-

column indexes

o Forces the Db2 optimizer to choose either a single index or multiple index access, likely impacting

performance

o In some cases, single-column indexes are perfectly fine and all that is needed

o An example

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 59

• Application reportedly causing FA utilization alerts; HW team about to add
resources.

• Found various SQL calls without parameter markers running and performing
excessive asynchronous IO leading to the alerts.
DELETE FROM APPDM.CP_OG_CARDS_DETAIL

 WHERE request_id = ######

select count(*) as delete_row_cnt

 from appdm.CP_OG_CARDS_DETAIL

 where request_id=#######

• No indexes on the table; only access path choice was full table scan.

• Needed a new index on CP_OG_CARDS_DETAIL(REQUEST_ID).

Typical index usage – single column #3 (7|9)

60

Copyright © 2020 Cigna

• Savings totaled over 3¼ hours per day and eliminated 198 Billion logical reads per day.

• Experienced a 30% drop in physical reads from 460K to 320K reads/sec averaged
throughout the 24-hour day, saving more than 12 Billion physical reads per day.

• Eliminated storage FA utilization impacts affecting other unrelated application processing
in the environment.

• 96% of the remaining physical reads were from daily Db2 backups.

Typical index usage – single column #3 (8|9)

61

Copyright © 2020 Cigna

62

Copyright © 2020 Cigna

• With more complicated SQL calls, more complicated indexing is required.
• Think like the optimizer – what’s the best index?

• The smallest index that gives the best filtering

• When using multiple columns, weigh the length of the column (actual, in bytes) versus the
screening or filtering it provides

• Don’t include columns that provide no benefit; e.g. a column with one value (cardinality=1)
provides no filtering (although there is at least one exception to this)

• Don’t include long columns providing little benefit; e.g. a low cardinality column provides
little filtering

• What’s indexable; = versus <> versus LIKE, ANDs/ORs precedence, INs over NOT INs, etc.

Typical index usage – multi-column #1 (1|7)

63

Copyright © 2020 Cigna

• Generally, multi-index access indicates a potential tuning opportunity. The more
indexes involved (2, 3 etc.), the greater the opportunity.

• Essentially the optimizer has decided to use two different indexes and (usually)
AND the results together and then fetch the qualifying data rows.

• In these cases, a better index choice would be a multi-column index having the
necessary columns to optimize access for the query using just one index.

• However there are exceptions to this. If for instance you do need the two indexes
for other processing, and it’s not worth the overhead of a third index
(overlapping columns with the other two indexes), and performance is
“sufficient” considering processing volume, then a third index isn’t warranted.

Multi-index usage versus multi-column index (1|4)

64

Copyright © 2020 Cigna

• In the following example, originally two different indexes were used to resolve
the criteria in the WHERE clause, including U7C98_CIGNA_ACCT_NR from the 4X
index and U04A6_CIGNA_CLIENT_ID from the 2X index.

• Unfortunately this results in a less-than-optimal multi-index access path with
additional processing, including additional physical sorts.

• Since the 2X and 4X indexes were created specifically for other search calls, we
didn’t want to change them in such a way affecting other SQL.

• We added U04A6_CIGNA_CLIENT_ID to the existing 4X index and on the next two
slides are the original and improved access paths.

Multi-index usage versus multi-column index (2|4)

65

Copyright © 2020 Cigna

66

Copyright © 2020 Cigna

67

Copyright © 2020 Cigna

• One of the most powerful features of indexes is to eliminate reading all qualifying
data and then physically sorting it.

• SQL calls with ORDER BY, GROUP BY and DISTINCT clauses frequently require
physically sorting the results. And if the results set is large, overflowing to temp
space on disk is typical and has even larger impacts on performance.

• This applies to OLTP particularly when paging through multiple rows of data, and
to batch processing.

• Proper indexing taking into consideration the WHERE clause predicates AND sort
requirements, can lead to huge savings.

Sorting #1 (1|15)

68

Copyright © 2020 Cigna

SELECT ...

 FROM CGIOS2.DocVersion T0

 WHERE ((T0.object_class_id IN (?))

 AND T0.home_id IS NULL -- card=1; always NULL

 AND T0.recovery_item_id IS NULL -- card=1; always NULL

 AND ((version_status = ?

 AND (ube06_searchtype = ? OR ube06_searchtype = ?))))

 ORDER BY u1708_documenttitle ASC, object_id ASC

 FETCH FIRST 1000 ROWS ONLY

OPTIMIZE FOR 1000 ROWS

• An index on DOCVERSION (VERSION_STATUS, OBJECT_CLASS_ID,
U1708_DOCUMENTTITLE, OBJECT_ID, UBE06_SEARCHTYPE) resolves the equal
and IN(?) (really an equal) from the WHERE clause, the two order by columns,
and the final OR condition on searchtype.

Sorting #1 (2|15)

69

Copyright © 2020 Cigna

• The index also resolves paging criteria on subsequent page request SQL calls that
look similar, with additional paging WHERE criteria on U1708_DOCUMENTTITLE
and OBJECT_ID.

• Allows processing to match and position within the index based on the first two
columns, and then retrieve the qualifying data in the desired sort sequence
WITHOUT ACTUALLY SORTING because it’s traversing the sorted index.

• While traversing the index, it applies the remaining filtering criteria on searchtype
and fetches and returns the data rows in the desired sequence meeting those
criteria.

• There are various names for this including “step-through” index processing.

Sorting #1 (3|15)

70

Copyright © 2020 Cigna

• Can be very beneficial when processing large amounts of data, for example batch
processing.

• Instead of having to retrieve and fetch all qualifying data and sort it, the data is accessed via
the index in sorted fashion.

• Even better if the table data is “clustered” by this index (coming up shortly) to minimize
physical IO to the table data pages.

• Even for smaller processing such as OLTP, instead of retrieving all qualifying data
and sorting it, data is identified immediately and in pre-sorted sequence,
particularly useful for paging programs.

Sorting #1 (4|15)

71

Copyright © 2020 Cigna

• Another example:
SELECT ...

 FROM DocVersion T0

 WHERE (T0.home_id IS NULL -- card=1; always NULL

 AND (((u7118_documentstatus = ? -- card=5; 2 selected; poor index

 OR u7118_documentstatus = ?) -- candidate; but small & needed

 AND object_class_id IN (?, ?, ?, ?, ?) -- card=12; 5 selected; poor

 AND version_status = ?))) -- card= 3; 1 selected; poor

 ORDER BY udd53_receivedon ASC, object_id ASC

 FETCH FIRST 400 ROWS ONLY

OPTIMIZE FOR 400 ROWS

• Created new index (VERSION_STATUS, UDD53_RECEIVEDON, OBJECT_ID,
OBJECT_CLASS_ID, U7118_DOCUMENTSTATUS).

Sorting #2 (5|15)

72

Copyright © 2020 Cigna

• Even with poor cardinality on the where clauses, this SQL statement ran well by
matching on the first column, using the second and third to resolve the physical
sort, and the fourth and fifth to provide additional screening on columns where
more than one value is specified.

• The DBMS can “step through” the index and retrieve the rows in sequence as
they appear on the index, up to 400 as specified in the SQL.

• And since the data is “clustered” (coming up next) on this index, physical IO is
minimized.

Sorting #2 (6|15)

73

Copyright © 2020 Cigna

Sorting #2 (7|15)

74

Copyright © 2020 Cigna

• Another example:
SELECT ...

 FROM DocVersion T0

 WHERE (T0.home_id IS NULL -- card=1; always NULL

 AND T0.recovery_item_id IS NULL -- card=1; always NULL

 AND ((ub3e8_clientname = ? -- card=30,209

 AND object_class_id=? -- card=12

 AND version_status = ?))) -- card=3

 ORDER BY ub3e8_clientname DESC, object_id ASC

 FETCH FIRST 400 ROWS ONLY

OPTIMIZE FOR 400 ROWS

• Created new index (VERSION_STATUS, OBJECT_CLASS_ID, UB3E8_CLIENTNAME,
OBJECT_ID). Even with poor cardinality and one column with fair cardinality on
the where clauses, this SQL statement ran well by matching on the first three
columns, and using the fourth to resolve the physical sort.

Sorting #3 (8|15)

75

Copyright © 2020 Cigna

• The DBMS can “step through” the index and retrieve the rows in sequence as
they appear on the index, up to 400 as specified in the SQL.

• And since the data is “clustered” (coming up next) on this index, physical IO is
minimized.

• Note the DESC sort sequence doesn’t matter in this example since there is an
equal clause on UB3E8_CLIENTNAME; in fact the ORDER BY criteria on this
particular column isn’t even required, only OBJECT_ID.

Sorting #3 (9|15)

76

Copyright © 2020 Cigna

• Before

• After

Sorting #3 (10|15)

77

Copyright © 2020 Cigna

• Comparison

Sorting #3 (11|15)

78

Copyright © 2020 Cigna

• Another example:
SELECT ...

 FROM DocVersion T0

 WHERE (T0.home_id IS NULL -- card=1; always NULL

 AND T0.recovery_item_id IS NULL -- card=1; always NULL

 AND ((uab28_policynumber = ? -- card=64,001

 AND object_class_id=? -- card=12

 AND version_status = ?))) -- card=3

 ORDER BY ud1e3_policyfromdate DESC, object_id ASC

 FETCH FIRST 400 ROWS ONLY

OPTIMIZE FOR 400 ROWS

• Created new index (VERSION_STATUS, OBJECT_CLASS_ID,
UAB28_POLICYNUMBER, UD1E3_POLICYFROMDATE DESC, OBJECT_ID). Even
with poor cardinality and one column with fair cardinality on the where clause,
this SQL statement ran well by matching on the first three columns, and using the
fourth and fifth to resolve the physical sort.

Sorting #4 (12|15)

79

Copyright © 2020 Cigna

• The DBMS can “step through” the index and retrieve the rows in sequence as
they appear on the index, up to 400 as specified in the SQL.

• And since the data is “clustered” (coming up next) on this index, physical IO is
minimized.

• Note that previously this used the index created in the prior example. Note also
the DESC sort sequence does matter in this example. Although with REVERSE
SCAN indexing, either works.

Sorting #4 (13|15)

80

Copyright © 2020 Cigna

• Before

• After

Sorting #4 (14|15)

81

Copyright © 2020 Cigna

• Comparison

Sorting #4 (15|15)

82

Copyright © 2020 Cigna

• There are various types of referential integrity or RI.
• RI can be DBMS-enforced or application-enforced.

• These days, let the DBMS handle RI unless there are situations the DBMS can’t handle.

• The simplest is declaring a column or group of columns unique:
• A one-column example is the CLAIM table where you can only have one row for a CLAIM_ID;

this index would be defined as UNIQUE and the DBMS would prevent inserting a row with a
duplicate CLAIM_ID.

• A two-column example is the CLAIM_LINE table where you can only have one row for the
combination of CLAIM_ID and LINE_ITEM. This two-column index would be defined as
UNIQUE and the DBMS would prevent inserting a row with a duplicate CLAIM_ID / LINE_ITEM
combination.

Referential Integrity (1|8)

83

Copyright © 2020 Cigna

• When an index is unique, either one column or multi-column:
• Define the index as unique to tell the optimizer there will be only one row for any entry (e.g.

the chain length is always one).

• The DBMS can better optimize queries knowing this column or group of columns is unique.

• You can “INCLUDE” additional columns for index-only access (coming up shortly).

• Another type of RI is the parent-child relationship involving foreign keys:
• A CLAIM_LINE row can’t be inserted until the corresponding parent CLAIM row has been

inserted.

• The DBMS checks for the existence of the CLAIM_ID on the CLAIM table before allowing any
inserts to CLAIM_LINE with that same CLAIM_ID.

• For this check it’s imperative there's an index on the CLAIM_ID column, which there almost
certainly is since it’s likely the primary key of the table.

Referential Integrity (2|8)

84

Copyright © 2020 Cigna

• Consider the process to archive and purge old claims after some period. There
are three RI options when deleting the parent:

• To delete all the children too at the same time as part of that delete, use CASCADE.

• If instead you don’t want to delete the parent until all children are deleted first, use RESTRICT
to prevent deleting child rows.

• Can also set the CLAIM_ID on the CLAIM_LINE table to NULL using the SET NULL option.

• Same options on UPDATEs.

Referential Integrity (3|8)

85

Copyright © 2020 Cigna

• For example:
ALTER TABLE CLAIM_LINE

 ADD CONSTRAINT CLAIM_FK

 FOREIGN KEY(CLAIM_ID)

 REFERENCES CLAIM -- On CLAIM_LINE insert, ensure CLAIM_ID exists on CLAIM

 ON DELETE CASCADE -- On CLAIM delete, cascades; index CLAIM_LINE(CLAIM_ID)

 ON UPDATE RESTRICT -- On CLAIM update, restricts; index CLAIM_LINE(CLAIM_ID)

• Index on CLAIM_LINE (CLAIM_ID, LINE_ITEM) suffices since CLAIM_ID is leading
column.

Referential Integrity (4|8)

86

Copyright © 2020 Cigna

• Here’s an example of a very straightforward DELETE:
delete from REASON_NOT_COVERED

 where RNC = 1368

Referential Integrity (5|8)

87

Copyright © 2020 Cigna

• Here’s an example of a very straightforward DELETE:
delete from REASON_NOT_COVERED

 where RNC = 1368

• And here’s the EXPLAIN:

• What happened here? Why five tablescans? Four are quite large compared to
the simple DELETE using the PK index.

Referential Integrity (6|8)

88

Copyright © 2020 Cigna

• Looking at the REASON_NOT_COVERED DDL, we see:
ALTER TABLE PEND_CHASE_RNC_DET

 ADD CONSTRAINT FK_PEND_CHASE_D1 FOREIGN KEY (RNC)

 REFERENCES REASON_NOT_COVERED (RNC)

 ON DELETE RESTRICT

 ON UPDATE NO ACTION

ALTER TABLE CLAIM

 ADD CONSTRAINT FK_536 FOREIGN KEY (RNC)

 REFERENCES REASON_NOT_COVERED (RNC)

 ON DELETE RESTRICT

 ON UPDATE NO ACTION

ALTER TABLE CLAIM_AU

 ADD CONSTRAINT FK_20654 FOREIGN KEY (RNC)

 REFERENCES REASON_NOT_COVERED (RNC)

 ON DELETE RESTRICT

 ON UPDATE NO ACTION

ALTER TABLE CLAIM_SERVICE_ITEM

 ADD CONSTRAINT FK_537 FOREIGN KEY (RNC)

 REFERENCES REASON_NOT_COVERED (RNC)

 ON DELETE RESTRICT

 ON UPDATE NO ACTION

ALTER TABLE CL_SERV_ITEM_AU

 ADD CONSTRAINT FK_20657 FOREIGN KEY (RNC)

 REFERENCES REASON_NOT_COVERED (RNC)

 ON DELETE RESTRICT

 ON UPDATE NO ACTION

Referential Integrity (7|8)

89

Copyright © 2020 Cigna

• Each of these tables:
PEND_CHASE_RNC_DET

CLAIM

CLAIM_AU

CLAIM_SERVICE_ITEM

CL_SERV_ITEM_AU

requires an index with leading column RNC to eliminate the table scans.

• Table PEND_CHASE_RNC_DET is only two pages so a table scan is acceptable,
however an index would be optimal and avoid accessing the data pages at all.

Referential Integrity (8|8)

90

Copyright © 2020 Cigna

• Often we can eliminate access to table data pages entirely by adding one or more
columns to an index.

• Doing this increases the size of the index, and time to create and maintain the index (e.g.
INSERTs), but may also benefit other SQL calls.

• The goal is to eliminate what will likely be physical IO to the table data pages to get additional
columns in the select clause.

• Don’t overuse this feature; it may make sense in cases where adding a short
column or two helps many SQL calls; that’s where to use this.

• Some DBMS index analyzers make recommendations that flood indexes with
additional columns to reduce IO.

Index-only access (1|2)

91

Copyright © 2020 Cigna

• Doing this can lead to redundant indexing on primary keys and other unique
indexes. DBAs often had to create a unique index to ensure a unique constraint,
and for performance reasons create a second index with additional columns for
index-only access which is redundant.

• To avoid this, nearly all DBMS have added the INCLUDE feature, to include
additional columns on a unique index for index-only access without affecting the
unique constraint on the base column or columns. For example:
CREATE UNIQUE INDEX CLAIM_PK

 ON CLAIM

 (CLAIM_ID ASC)

 INCLUDE

 (CLAIM_STATUS);

Index-only access (2|2)

92

Copyright © 2020 Cigna

• “One fetch” access is a very special case; a frequently-used example is a subselect
to get the maximum (or minimum) of some date column:
SELECT MAX(EFF_DATE)

 FROM tablename

 WHERE ACCT_NUM =?

 AND SUBSC_PID=?

• This SQL will benefit from an index on (ACCT_NUM, SUBSC_PID) but then require
access to data pages to get EFF_DATE, and a sort to derive the maximum value.

• Instead, create optimal index (ACCT_NUM, SUBSC_PID, EFF_DATE DESC) to:
• Make this query index only and

• “One fetch” because the first entry accessed will be the max since the collating sequence on
EFF_DATE is descending.

“One fetch” access (1|3)

93

Copyright © 2020 Cigna

• This has a lot of applicability especially when retrieving maximum or minimum
values in a subselect passed back to complete criteria in the main select.

• An example from 2001 was a recommended index change to improve one SQL
call run repeatedly (average of once every 20 seconds):
SELECT MAX(A_RANDOM_NUM) INTO :H :H

 FROM GGDD.PORG_PROV_RFL_MAP

• Changed index to (A_RANDOM_NUM DESC)

• Converted NMI-scan to "one-fetch" access; dramatically reduced lock contention,
completely eliminated lock timeout abends (over 15 CICS abends per day), etc.

• Saved $1,600,000 per year (CPU) plus intangible savings from dramatically
reduced customer wait time, abends, frustration and rework.

“One fetch” access (2|3)

94

Copyright © 2020 Cigna

“One fetch” access (3|3)

95

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

8
-1

5

8
-1

6

8
-1

7

8
-1

8

8
-1

9

8
-2

0

8
-2

1

8
-2

2

8
-2

3

8
-2

4

8
-2

5

8
-2

6

8
-2

7

8
-2

8

8
-2

9

8
-3

0

8
-3

1

9
-1

9
-2

9
-3

9
-4

9
-5

9
-6

9
-7

9
-8

9
-9

9
-1

0

9
-1

1

9
-1

2

9
-1

3

9
-1

4

9
-1

5

9
-1

6

9
-1

7

9
-1

8

9
-1

9

9
-2

0

9
-2

1

9
-2

2

"One Fetch" Access With Index Change Implemented Sunday 9/16/2001
Elapsed CPU

Copyright © 2020 Cigna

• Expression-based indexes

o Impacts of mixed case data

o Data entered free form; could be lower, upper or mixed case

o Data used frequently in searches, but unsure what case to use

o Concerned about performance of searches? And results returned by searches? You should be

o Recent example using relatively-new (Db2 10.5) LOWER (SSO_ID) and LOWER (EMAIL)

o Two options:

1. If possible, choose case to convert to before data row insert, and use for searches; either lower (e.g. email

address) or upper (e.g. street address); will save processing time later and avoid potential issues

2. If mixed case is required (e.g. names):

 Insert data in mixed case for proper display

 Settle on one case to use when retrieving data from a mixed-case column, either upper or lower (has no

impact on how the data is displayed); in this case we’ll use upper

 Create an index on UPPER (LAST_NAME) for search purposes to avoid table / non-matching index scan

 Always use WHERE UPPER (LAST_NAME) = ? (which is all upper case)

o Recent example using relatively-new (Db2 10.5) LOWER (SSO_ID) and LOWER (EMAIL)
CREATE INDEX ERD.DLG_USER6X
 ON ERD.DLG_USER
 (LOWER(EMAIL) ASC)

 ALLOW REVERSE SCANS;

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 96

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 97

• EXCLUDE NULL KEYS

o Situation encountered on FileNet database with column that should be unique

o However this column is NULL for multiple “template rows”

o Need to enforce uniqueness via UNIQUE index, but couldn’t until …

o Relatively-new (Db2 10.5) EXCLUDE NULL KEYS allows multiple rows with NULL while enforcing

uniqueness across all other rows

CREATE UNIQUE INDEX SVPP8DENTAL.CI_DOCVERSION_13X

 ON SVPP8DENTAL.DOCVERSION

 (U2728_DCN ASC)

 PCTFREE 10

 ALLOW REVERSE SCANS

 EXCLUDE NULL KEYS;

o This was the first time we’ve ever had to use this option

o Improves compatibility for migrations from Oracle (default in Oracle)

Indexing

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 98

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 99

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• Storage types

o SSD (Solid-State Drives) or Flash

o Spindle

o Optical

• Measurable impact

o Large project that included multiple performance improvements

1. Major data purging

2. DB re-configuration, including HADR

3. Created six new indexes and changed ten existing indexes

4. HW, OS and DBMS upgrades

5. CPU cores reduced 25%

6. SSD or Flash storage for all tables, indexes and transaction logs

• We could easily measure the overall impact, but what impact did SSD alone have?

• We found out on 6/30 when we were “migrated” off SSD in error

• Two weekends later, migrated back onto SSD; see next slide showing the impact

Flash Storage (SSD)

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 100

IDUG Db2 Tech Conference
Charlotte, NC | June 2 – 6, 2019

101

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 102

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• HADR

• Replication and bi-directional failback capability

o Using the prior example

1. DBMS upgrade required an OS upgrade

2. OS upgrade required a HW upgrade

3. Able to provide bi-directional failback capability with the additional HW copy

4. While still operating on the old platform, we moved data to new platform, purged, reorged, runstat, and we also

replicated updates from the operational database on the old platform to the new platform

5. After two weeks, we “migrated” (re-pointed) the app to the new platform

6. If we encountered an issue after migration, we could re-point to the old environment where the data was

current, again due to replication to keep the old platform data accurate

7. After several days, we cut the lifeline to reduce overhead and began to free up the old platform resources

8. We used IIDR\SQL Replication (DProp) for the data propagation in both directions (old to new before migration

and new to old after migration)

Implementation Details

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 103

Topics

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 104

• HW, SW and Currency

• DB Configuration

• Maintenance

• Data Archive and Purge

• SQL

• Indexing

• Flash Storage (SSD)

• Implementation Details

• Q & A and More Information

• Q & A

• “How To Make Up Time, Or, How To Save Five Days In A Single Day”

o CRM application upgrade and performance improvement project including HW upgrade, CPU core

reduction, OS upgrade, storage conversion to SSD, DBMS upgrade, many configuration updates,

major data purges, six index adds and ten index changes, all while maintaining bidirectional failback

capability

o 2018-06-05 Central Canada Db2 User Group (CCDUG) Conference

o 2019-06-04 International Db2 User Group (IDUG NA) Conference

• “Indexes: They’re Not Just For Where Criteria Anymore”

o Presentation covering many aspects of indexing, many slides included in this presentation

o 2019-04-30 Central Canada Db2 User Group (CCDUG) Conference

o 2020-08-13 International Db2 User Group (IDUG NA) Virtual Conference

• Jim Bean, Cigna Performance & Forensics

• Email: jim.bean@cigna.com

Q & A and More Information

Confidential, unpublished property of Cigna. Do not duplicate or distribute. Use and distribution limited solely to authorized personnel. © 2021 Cigna 105

